
Job Coscheduling on Coupled High-End
Computing Systems

Wei Tang*, Narayan Desai#, Venkatram Vishwanarth#

Daniel Buettner#, Zhiling Lan*

* Illinois Institute of Technolology

Argonne National Laboratory

Outline

• Background & Motivations

• Problem Statement

• Solutions

• Evaluations

Background

• Coupled systems are commonly used
– Large scale system: computation, simulation, etc

– Special-purpose system: data analysis,
visualization, etc

• Coupled applications:
– Simulation / computing applications

– Visualization/data analysis applications

– Example: FLASH & vl3, PHASTA & ParaView

Coupled systems examples

• Intrepid & Eureka @ANL
– Intrepid: IBM Blue Gene/P with 163, 840 cores (#13 in Top500)
– Eureka: 100-node cluster with 200 GPUs (largest GPU installation)

• Ranger & Longhorn @TACC
– Ranger: SunBlade with 62,976 cores (#15 in Top500)
– Longhorn: 256-node Dell Cluster, 128 GPUS

• Jaguar & Lens @ORNL
– Jaguar: Cray XT5 with 224, 162 cores (#3 in Top500)
– Lens: 32-node Linux cluster, 2 GPUs

• Kraken & Verne @ NICS/UTK
– Kraken: Cray XT5 with 98,928 cores (#8 in Top500)
– Verne: 5-node Dell cluster.

• And so on … …

Motivation

• Post-hoc execution
– Computing applications write data to storage system,

and then analysis applications read data from storage
system and process

– I/O time consuming

• Co-execution is increasingly demanded:
– Saving I/O time by transfer data from simulation

application to visualization/data analysis (an ongoing
project named GLEAN)

– Co-execution enables monitoring simulations,
debugging at runtime

– Heterogeneous computing

Problem statement

• System A and B running parallel jobs
– Job schedulers / scheduling policies are independent

– Job queues are independent

• Some of jobs on A has associated (mate) jobs on B.
– Mate jobs are in pairs: one on A, the other on B

• Co-scheduling Goal:
– Guarantee the mate jobs in the same pair start at same

time on their respective hosting system without manual
reservation

– Limit the negative impact of system performance and
utilization.

Related work

• Meta scheduling
– Managing jobs on multiple clusters via a single instance
– Moab by Adaptive Computing Inc, LoadLeveler by IBM
– Our work is more distributed. Different scheduler running

on independent resource management domain can
coordinate job scheduling.

• Co-Reservation
– Co-allocation of compute and network resources by

reservation
– HARC (Highly-Available Resource Co-allocator) by LSU
– Our work doesn’t involve manual reservation; co-

scheduling is automatically coordinated.

Basic schemes

• When a job can start to run on a machine
while its mate job on the remote machine
cannot, it may “hold” or “yield”.

• Hold
– Hold resources (nodes) which cannot be used by

others until the mate job can run

• Yield
– Give up the turn of running without holding any

resources

Algorithm

flowchart

Strategies combination

• Hold-Hold
– Good for the sync-up of mated jobs

– Bad for system utilization

– May cause deadlock

• Yield-Yield
– No hurt for system utilization

– Bad for mated jobs waiting

• Hold-Yield (or Yield-Hold)
– Behave respectively

Deadlock
• Coupled systems A & B, both use “hold”

scheme

• Circular wait (a1b1b2a2a1)

Enhancements

• Solving Deadlock

– Release all the held nodes periodically (e.g. every
20 minutes)

• Reduce overhead

– Threshold for yielding times

• Fault-Tolerance consideration

– A job won’t wait forever when the remote
machine is down

Evaluation

• Event-driven simulation using real job trace
from production supercomputers.

• Qsim along with Cobalt resource manager.

Experiment goals

• Investigate the impact by tuning system load

• Investigate the impact by tuning the
proportion of paired jobs.

Job traces

• Intrepid (real trace)

– One month, 9220 jobs, sys. Util. 70%

• Eureka (half-synthetic, packed into one month)

– Trace 1: 5079 jobs, sys. Util. = 25%

– Trace 2: 11000 jobs, sys. Util. = 50%

– Trace 3: 14430 jobs, sys. Util. = 75%

– Synthetic: 9220 jobs. Sys. Util. = 48%

Evaluation Metrics

• Avg. waiting time
– Start time – Submission time
– Average among total jobs

• Avg. slowdown
– (wait time + runtime) /runtime
– Average among total jobs

• Mated job sync-up overhead
– How many more minutes need to wait in co-scheduling
– Average among all paired jobs

• Loss of computing capability
– Node-hour
– System utilization rate

Average wait by sys. Util.

Scheme on Intrepid-Eureka
HH: Hold-Hold
HY: Hold-Yield
YH: Yield-Hold
YY: Yield-Yield

Sys util. on Eureka:
25% 50% 75%

Slowdown by sys. Util.

Coscheduling overhead by sys. Util.

0

50

100

150

200

250

25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

m
in

u
te

s

Eureka config. (sys. util./scheme)

Intrepid job sync-up overhead (average)

hold yield

0

20

40

60

80

100

120

140

160

25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

m
in

u
te

s
Eureka sys. util. / Intrepid scheme

Eureka sync-up overhead (average)

hold yield

Using yield costs more sync-up overhead than using hold

Loss of computing capability by sys. Util.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

lo
s
t
s
y
s
.
u

ti
l.
 r

a
te

n
o

d
e
-h

o
u

r

Eureka config. (sys. util/scheme)

Intrepid loss of computing capability

node hour sys. Util

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

0

500

1000

1500

2000

2500

3000

3500

4000

25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

lo
s
t
s
y
s
.
u

ti
l.
 r

a
te

n
o

d
e

-h
o

u
r

Eureka sys. util./Intrepid scheme

Eureka loss of computing capability

node hour sys. Util.

Util loss is caused only by using “hold”

Avg. wait by proportion of paired jobs

Slowdown by proportion of paired jobs

Overhead by proportion of paired jobs

0

20

40

60

80

100

120

140

160

2.5%/H 5%/H 10%/H 20%/H 33%/H

m
in

u
te

s

mate job ratio/remote scheme

Intrepid job sync-up overhead (average)

hold yield

0

50

100

150

200

250

2.5%/H 5%/H 10%/H 20%/H 33%/H

m
in

u
te

s

mate job ratio/remote scheme

Eureka job sync-up overhead (average)

hold yield

Loss of computing capability by proportion
of paired jobs

0%

5%

10%

15%

20%

25%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2.5%/H 5%/H 10%/H 20%/H 33%/H
n

o
d

e
-h

o
u

r

mate job ratio/remote scheme

Eureka loss of computing capability

node hour sys. Util

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2.5%/H 5%/H 10%/H 20%/H 33%/H

n
o

d
e

-h
o

u
r

mate job ratio/remote scheme

Intrepid loss of computing capability

node hour sys. Util

Summary

• Designed and implemented coscheduling
algorithm to start associated at the same time in
order to fulfill multiple needs of certain
applications, such as reducing I/O overhead in
coupled HEC environment.

• Evaluated the coscheduling impact on system
performance and overhead for jobs needing co-
scheduling.

• Conclusion: coscheduling can work with some
acceptable overhead under different system
utilization rate and proportion of mated jobs.

Thank you!

